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AI
ABSTRACT

Many iterative algorithms for the solution of large linear systems may be effectively

vectorized only if the diagonal of the matrix is surrounded by a large band of zeroes, which

is called the zero stretch. In this paper, a multicolor numbering technique is suggested for

maximizing the zero stretch of irregularly sparse matrices. The technique, which is a gen-

eralization of a known algorithm for regularly sparse matrices, executes in linear time, and

produces a zero stretch approximately equal to n /2 . where a is the number of colors used

in the algorithm. For triangular meshes, it is shown that o-3. and'that it is possible to

obtain 0"2 by applying a simple backtracking scheme.

This work is. in part, supported under ONR contract N0O014-85-K-033Q. and the Air Force contract
AFOSR-84-0131.
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1. INTRODUCTION

Iterative solution techniques, in general, and preconditioned conjugate gradient

methods (PCCG). in particular. are becoming more and more attractive for the solution of

sparse linear systems. Namely because these methods preserve sparsity. and thus allow for

the solution of large systems without resorting to auxiliary (off core) storage. This is a big

advantage over direct solution methods that destroy sparsity. Moreover. the availability of

supercomputers contributed to the popularity of the iterative techniques by providing the

computational power necessary for the solution of huge linear systems. and yet not provid-

ing enough memory for storing the systems in their dense (or banded) forms.

However, the power of supercomputers may be fully exploited only for computations

which are vectorizable. Unfortunately, one of the best known iterative techniques for the

solution of symmetric, positive definite, linear systems. namely the incomplete

factorization/PCCG method [11. 13], requires the solutions of triangular linear systems of

equations. The algorithms for the solution of such systems are highly recursive, and thus

poorly vectorizable. More specifically, for the solution of a linear system Ax = b, each

PCCG iteration requires the solution of two triangular systems of the forms (L +D )x =b

and (L +D Y x =b, where L is a strictly lower triangular matrix and D is a diagonal

matrix. Both L and D are derived from A . and, for irregularly sparse systems, the spar-

sity structure of L +D +L T is identical to the sparsity structure of A.

The recursive solution algorithms for (L +D )x =b and (L +D )Y x =b are only vector-

izable to the extent permitted by the structure of L. More specifically, these algorithms

may be written in terms of vectors of length A, where A is the size of the maximum band

which contains zeroes below the diagonal of L (for more details see [15]). A more precise

definition of A may be given as follows

Definition: The zero stretch of an n xn strictly lower triangular matrix L is the largest

integer A such that a:., =0 for i =1 .... n and i < j -A. In this paper, we assume

that L +D +L r has the same sparsity structure as A . and we define the zero stretch of A
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to be equal to the zero stretch of L.

Hence. for the efficient solution of (L +D )x =b and (L +D )Tx =b on vector super-

computers. it is essential to rearrange the rows and columns of the n Xn symmetric matrix

A with the goal of maximizing the zero stretch. In order to achieve this goal. we consider

the graph GA corresponding to A . More precisely. GA contains n nodes which are num-

bered by the integers 1. .n such that the node numbered i corresponds to row/column i

in A. and GA contains an edge from node i to node j if and only if the (i ,J )th element of

A is non-zero. Now. interchanging rows/columns i and j in A is equivalent to inter-

changing the numbers of the two corresponding nodes in GA . In other words, maximization

of the zero stretch of A may be obtained by renumbering the nodes of G.;. That is by

assigning to each node i, 1 i <n. a unique number v(i). 1 <v(i )4n. such that the

difference between YUi ) and v(j) for any two neighboring nodes i and j in GA is as large

as possible.

Clearly. the problem of maximizing the zero stretch of a matrix is. in some sense, the

reciprocal of the problem of minimizing the bandwidth of the matrix [18]. The latter prob-

lem is one of minimizing the difference I z(i )-v(j ) I. and is important for direct solutions V

of linear systems. Both problems have been proven to be NP-hard (see [5. 10, 16]). How-

ever, many heuristics have been studied for bandwidth minimization (see for examples

(4. 6. 12. 21]). while, to our knowledge, the problem of zero stretch maximization have been

studied only in the context of matrices resulting from the discretization of partial

differential equations (PDE) on regular grids (see for example [1. 7. S. 14. 17. 19]).

If a matrix A results from the discretization of a PDE on a regular grid, then its

corresponding graph, GA . has a repetitive structure which allows for a simple numbering

scheme. Very briefly, a systematic way may be used to color the nodes in G.-, such that

any two adjacent nodes have different colors. Then, consecutive numbers are assigned to

the nodes that have the same color. If n,. is the number of nodes assigned the color c and

nm, min~n, }. then the zero stretch resulting from the multicolor numbering is approxi-

C6
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mately equal to n n.

Multicolor numbering schemes may be generalized and applied to pierced rectangular

grids [14. 15] and to irregular grids. In'this paper. a multicolor numbering of irregular tri-

angular grids is considered, and its effect on the zero stretch of the corresponding matrices is

studied. Both theoretical and experimental results are presented.

The numbering algorithm is described in Section 2. Briefly. the basic step in the algo-

rithm is the construction of a level structure similar to the one used in the Cuthill-McKee

algorithm [4). The levels are. then. grouped into two groups, namely the odd numbered

levels and the even numbered levels, and the nodes in each level are colored such that

neighboring nodes have different colors. Finally, the nodes which have the same color in

the odd numbered levels are numbered consecutively, and the same is repeated for the even

numbered levels.

The efficiency of the algorithm is studied in Section 3. and a lower bound on the

resulting zero stretch is obtained. This bound shows that larger zero stretches may be

obtained by reducing both the number of colors, o', needed to color each level, and the

difference, aax., between the number of nodes in the odd numbered levels and the number

of nodes in the even numbered levels.

The theoretical lower bound on the zero stretch motivates two modifications of the

basic algorithm. The first modification, which is described in Section 4. aims at the reduc-

tion of amin. and the second, which is described in Section 5. aims at the reduction of 47.

Finally, in Section 6. the results of running the algorithm on three irregular meshes are

presented and discussed.
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2. DESCRIPTION OF THE ALGORITHM

The class of meshes considered in this study consists of irregular meshes of triangular

elements, where each element contains three nodes located at the corners of the triangle. If

a mesh in the above class is used to discretize a PDE. then the resulting matrix A

corresponds to a graph GA which has the same topology as the mesh itself. For this reason.

we will not differentiate, from now on. between the mesh and the graph G...

Given a graph GA in which nodes are identified by the integers 1. " .n. the problem

is to find the numbering function. v:[1,n] -. [1,n 1. which maximizes the following

A = min{ I v(i )-(j) I i and j are neighbors in GA}

Unfortunately, the number of possible numbering functions is n! (factorial n ), and

the specific numbering that maximizes A may not be found without trying (in the worst

case) all of the n! numberings. In the remaining of this section, we will describe an algo-

rithm which executes in linear time and finds a numbering that produces a large A. The

basic idea of the algorithm is the inclusion of each node of GA into one of t lists, namely

L..1 ... L' .such that:

1) Any two neighboring nodes in GA are not in the same list. That is. any given list

contains independent nodes, where two nodes are called independent if they are not

neighbors.

2) Let 0 be the smallest constant such that if the k6 node in some list and the I"h

node in another list are neighbors in GA , then I I - k I K 0. The order of the nodes

in each list should lead to a small 0?.

Given these lists, the nodes in the first list may be numbered consecutively, followed

by the nodes in the second list, then the third , and so on. If the number of nodes in list L

is denoted by I L I . then, the above scheme gi- zs

A >minIL' i-(
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Assuming that 0 << mini I L' I ), then, larger values of A may be obtained by maxim-

izing the size of the shortest list. That is. by using the minimum number of lists and mak-

ing the lists approximately equal in size. These were the major factors that guided the

design of our algorithm.

The first step toward the construction of the lists L 1. ,L' is the generation of a

level structure IV1. • •,V, ) that covers GA . This structure is similar to the one used in the

Cuthill-Mckee algorithm [4]. More specifically, the generation starts from an initial level

VI and proceeds inductively such that. given any level V,. the next level V, +1 is generated

by including in it any node which is a neighbor to a node in V, and which have not been

included in any of the previous levels V . .V,,. The number of nodes in V, is denoted

by I V. I. Note that. by construction, neighboring nodes may lie only on the same level or

on adjacent levels. That is. a node in a given level V, is independent of any node in levels

V., w>u+lorw<u-1.

The nodes in each level V,, are then partitioned into the minimum number of sets

V. .." .. each containing only independent nodes. In other words, no two nodes in the

same set V, may be neighbors. In Section 3. it is proved that three sets are always sufficient

to accomplish this partition for any level. Hence, if the number of sets required to partition

level V,, is denoted by s,. then. su (<3. Let o"= max {s, }. and for any level u with
1(u "

su < o. define the sets Vj. i =s,, +1• .o" to be empty.

Now, it can be readily seen that. by picking one set from each alternate level, a list of

independent nodes may be compiled. For example, all the nodes in V ' XV3' . ' . are "

independent, and hence. may be included in one list. Using this approach, all the nodes of I
GA may be distributed into 2cr lists of independent nodes; a" of these lists may be con-

structed from the odd numbered levels, and the other a from the even numbered levels. In

Fig 1. a logical representation of the level structure is shown, where two sets of indepen-

dent nodes are connected by an edge if and only if there exists two nodes. one in each set.

that are neighbors in GA. A list is highlighted in the figure by using the same hashing

'%
. '1
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direction for all of its sets.

I V \

I 6

Fig 1 - The partitioning of the level structure (a=3)

However, the above construction may produce lists that vary considerably in size.

with some lists being very small. By (1). this leads to a small A. In fact. the largest A is

obtained if the 2o" lists are of equal size.

It is possible to balance the size of the lists generated from odd (or even) numbered

levels. For example. assume that the lists L 1,.. .L are generated by picking sets from

the odd numbered levels. If after picking sets from V 1.V 3 . . -2. the lists are ordered

(and renamed) such that their sizes satisfy ILk I < ILk411, for k a1.." .-. then. the

sizes of the lists may be balanced by first renaming the sets V, ' ', .V, such that

I VI >I V,' +11. and then adding V1 into L I for k =1.. .. o'. If this process is applied at

all the odd levels. u = 1.3.. then, it is straight forward to prove the following using a

recursive argument:

I IL' I - IL) I I < maxflV.I :u=odd.andk=l. .oa) i.j < 0. (2.a)

where the outer most vertical bars in the left side of the inequality are used to indicate the

absolute value of a signed integer. Similarly. if the lists L 4 . .L2  are generated from

the even numbered levels, then

, . ... , ..- ., ...,. ., .., .,,. ,,,;,. ,,>.,: ...,-.. ,,:-........ . .'.?,',':, ; ,' ..;."."; -,",,". '' -
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I I l - I., I I, max{IV'I ;u=even.andk=1. ,- ij > o"+1 (2.b)

With the above strategy, the size of the lists L .,... ,L , as well as the size of the lists

L 0, ... ,L 2, may be balanced. However, the size of a list L' , i K, 0. relative to another list

L j . j >0, depends on the total number of nodes in the odd and even numbered levels.

That is, I L' I - I L i I only if u -odd I V. I = Eue.nI V. I. For the examples considered

in Section 6, these sums were approximately equal. However, should there be a big

difference between E. =odd IV,, I and Eu = Iven , I. then the 3-way grouping algorithm

described in Section 4 may be used.

In brief, the multicolor node numbering scheme may be summerized as follows:

NODE L MBERING ALGORITHM

Initially, input the nodes in level V 1 , and set u = 1

1) partition V, into the sets VI.. ,V 5 such that each set contains independent

nodes, and IVI I >, IV+ + ,k=1, . -1.

2) REPEAT until every node is in some level

2.1) u = u+1

2.2) Construct the next level V,

2.3) Partition V. into the sets Vul, ... ,V," such that the nodes in each set are

independent, and I V, I >I Vul + 11, k=,.su -1.

3) Let m be the number of levels obtained in step 2. and set

o-.=max~s, "u =1.''.m}

4) FOR i =1 ,2o', let L' = the empty list.

FOR u =1.- ,m. with an increment of 2. DO

4.1) Find two permutations; r on [1.0] and p on [0+1.20o], such that

I L I(4)I < I L rmk+1), k=1.'..,r-1.

LP(k)I <ILP(1+1)I, k =0"+1...20r-1.

K ,,,,,. ':.,:.,,'', ,.,;..'. ' . ,. ,, , • • " - -"- -" .. .. -., - .. -. ..- ". -. ". ",, .-..-. - .. .-. -,. ,. ,.- -,' ,'- . , -... ,'. ...--. ',= .. -'. '-
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4.2) FOR k =1, .o-. append the nodes in V,' to the list L -(k

4.3) FOR k =o'+1. . 2o, append the nodes in V, " to the list L P("

5) X=O

FOR i =1. 2o DO

FOR each node e in the list L DO

X=X+1 • V(e )X

It is easy to see that the execution time of the above algorithm is proportional to the

number of edges in GA. More specifically, the most time consuming part in the algorithm is

the construction of the level structure, which depends on the number of edges in the graph.

3 2V k=1 k =2 k =3

- -20 u=1 1 2
u =2 3,6.8 4.7

is
u =3 5.9 102 3 u=4 11.13 12

u =5 18.14.17 21.16 15
u =6 25.20 24.19 22 ",

24___ u =7 1 23 126

Li = (1.18.14.17)
L = (2.10.21.16,26)

9 7 L 3 = (5.9.15.23)

4 V = (3.6.8.22)
. L 5 = (4.7.12.24.19)

= (11.13.25.20)

(a) an arbitrary numbering (b) the construction of the lists

(c)3 Th 2uiolrnmbrn

Fig 2 - The numbering of an irregular mesh.

.. -,,-,..j'.'.,,'..,;_,.,., ,. ",,. ,,".'.'. ,. .. .,:. ". ", ", " ". =."," ," ." .'.',.-.'.':':,.'.:.'.',.', ':,.'..,.:.., "4" ", :"' " .:,"
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In Fig 2, the algorithm is applied to a simple mesh which consists of 26 nodes. The

levels are depicted by bold lines, and the sets of independent nodes within each level, as

well as the lists of independent nodes are identified in Fig 2(b) in terms of the arbitrary

numbering used in Fig 2(a). The numbering resulting from applying the algorithm is

shown in Fig 2(c). from which it may be seen that A = 3. If 124.25.26) is chosen as a start-

ing level, or if the backtracking algorithm described in Section 4 is applied, then the value

of 0' may be reduced from 3 to 2, and A = 4 is obtained. For this small problem, it was

possible to find the numbering which maximizes A by doing an exhaustive search which

took 382 hours to execute on a SUN3 workstation (a problem with 28 nodes would need

27X28X382 hours). The largest A was found to be equal to 7 for this mesh.

In the next section. a lower bound on the value of the zero stretch, A, resulting from

the algorithm is established.

'.r

I
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3. ANALYSIS OF THE ALGORITHM

The problem of partitioning the nodes in a level into sets of independent nodes is

equivalent to the problem of coloring the nodes in the level such that any two neighboring

nodes have different colors. Given such a coloring, the sets may, then. be formed by includ-

ing nodes with the same color in the same set. Hence, from now on. if a minimum of s

independent sets are required to partition a specific level, then we will say that this level is

s -colorable.

In this section we analyze the performance ot the algorithm and obtain a lower bound

on A produced by the algorithm. We need to digress slightly in doing so and study certain

properties of planar and outerplanar graphs. Specifically. we proceed as follows : first we

observe that GA is a planar graph: next we show that when the algorithm is executed on a

planar graph. if the initial level taken by the algorithm forms an outerplanar graph, then

each of the subsequent levels also forms an outerplanar graph; then. we show that any

outerplanar graph can be colored using no more than three colors; finally this result is used

to obtain lower and upper bounds on the performance of the algorithm.

3.1. Outerplanar graphs

Formally, [2, 3. 20]. an outerplanar graph is defined as follows:

Definition: A graph is said to be planar if there exists a mapping of its vertices and edges

into the plane such that a) each vertex v is mapped into a distinct point v' in the plane, b)

each edge (v.w ) is mapped onto a simple curve having end points (V' w' ), so that c) the

mappings of the edges meet only at common end points. A planar graph is said to be outer-

planar if it can be embedded in the plane such that all vertices lie on some contour and all

the edges lie inside this contour (see Fig 3(a)).[]

Definition: A subdivision of a graph G is a graph G'. obtained from G by replacing some

edge (u v) by a new vertex w together with the edges (u .w' ) and (wv v A graph H is

homeomorphic from a graph G if H can be obtained from G by a finite sequence of subdi

WW , ,'.,N-, •,,' ,
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a259

1 3

(a) An outerplanar graph (b) A K 4 graph (c) A K 2.3 graph

Fig 3 - Some planer graphs

visions. []

The following result is known previously [2]:

Theorem: Let K 4 denote the complete graph on 4 vertices and K 2.3 the complete bipartite

graph on 5 vertices (see Fig 3). Then a graph G is outerplanar if and only if G has no sub-

graph homeomorphic from K 4 or K 2 .. []

3.2. An upper bound on a"

In order to determine the maximum number of colors needed to color the nodes in any

particular level, we start by proving the following:

Proposition: Let G =(V E ) be a planar graph and let S =(V' E' ) be a connected subgraph

of G. If S Vk for some k during the execution of the node numbering algorithm of Sec-

tion 2. then V. +1 is outerplanar.

Proof: Assume, for contradiction, that V4 .1 is not outerplanar. Thus it must have a sub-

graph homeomorphic from K 4 or K 2 .3 . Since we are investigating meshes with triangular

elements only. we observe that if G.. contains a subdivision of K 4 or K 2.3, then it contains

K 4 or K 2 .3 respectively. Assume that K 4 is a subgraph of VL j and number its vertices

1.2.3.4 arbitrarily. Since S is connected and G.; is planar. S must be entirely contained

either in one of the internal regions (1.4.3). (1.2.4). and (2.3.4) or must be outside the K,

(that is, no vertex of S is in any of these regions) in any planar embedding of G . It is clear

%- % S.
.;', ". , ,. ,.;,,%.','--",-., -'--","-'.",,,-'-".',"-"."".'e , ", -'',''-',-', '-e,' '"'".':'"' ''r 7, " " ,e e e, = ' ' ,
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that whatever be the case, at least one edge connecting a vertex of S to one of the vertices

of K 4 must necessarily cross one of the edges of K 4. Similarly we can show in the case of

K 2 .3 that at least one vertex of K 2,3 cannot be connected to any vertex of S without cross-

ing an edge in any planar embedding of GA .I

In the statement of the above proposition, it is necessary that S be connected. Counter

examples can be easily constructed with S spread across several regions of K 4 or K 2 3 while

still guaranteeing the planarity of GA. The proposition implies that if the initial level

chosen by the algorithm is connected, then each of the levels generated later is an outer-

planar graph. This is true even if the levels other than the initial level are not connected
.%-

since the planarity of GA ensures that no level generated by the algorithm is spread across

the regions of a K 4 or K 2.3- Note that the connectedness of the initial level is a sufficient

and not a necessary condition. In other words. it is possible. for some meshes to start with

an initial level that is not connected and yet generate only outerplanar graphs as the subse-

quent levels.

The following result concerning the 3-colorability of outerplanar graphs was known

previously [2, 3. 201. However. we have not been able to find an explicit algorithm in the

literature which actually provides the coloring. We present such an algorithm here, which

is actually programmed as part of the experiments reported in Section 6. I
Theorem: Any outerplanar graph is 3-colorable.

Proof: We consider outerplanar graphs which do not have isolated nodes. The coloring of

isolated nodes is trivial becauser they do not have any neighbor. Given an outerplanar

graph G with N nodes, we first line up its nodes on a straight line such that all the edges

are on one side of the line. This is always possible by chosing any two adjacent nodes on

the contour of the planer embedding of the outerplanar graph. and considering these two

nodes to be the first and the last node in the node lineup. All other nodes may be lined up in

the order of their appearance on the contour (see Fig 4). In order to identify the nodes. ve

number them sequentially starting at one of the end nodes.

. S. . , • - -S*. o . • * "
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62 3 5 o 7 -a - 10 11 "12 13 -14 ,

Fig 4 - A different embedding (a line up) of the graph of Fig 3(a)

For any two neighboring nodes with numbers v and w (say v < w ). we define the

region r (v .w ) to be the set of nodes with numbers between v and w. including v and w.

Note that if w =v +1. then r (v ,w ) consists of only w and v. The following statement fol-

lows from the definition of outerplanarity: if a vertex u. different from v and w. is in

r (v .w ). then any region r (u e ). which has u as one of its end nodes. should be properly

contained in r (v.w ). The nesting level of a region is the number of regions which properly

contain that region. For example. a region r (v .w ) is called 0-nested if it is not contained in

any other region. That is. if there do no exist two nodes e I - v and e2 > w. such that e I

and e 2 are neighbors. and at most one of e I or e2 is equal to v or w. respectively.

The coloring strategy is recursive with respect to the nesting level. More specifically.

assume that r (u.w 1 ). r (U2 ,w 2)...., r (uk wk). k > 1. are the 0-nested regions in G.

Noting that u 1=1 and Wk =N. we define the set Ro(1.N) to contain all the end nodes of the

0-nested regions between nodes 1 and N. That is Ro(I.N) = u.w, I i =1.....k ). Clearly.

for any two consecutive regions. either v, = w,+j or v, = w, 1 - 1. In the former case.

node vi has two neighbors among the nodes in Ro(I.N ). and in the latter case. v, has only

one neighbor among the nodes in Ro(l.N). This argument applies to any node in R(L.N).

and hence, it is possible to color all the nodes in Ro(.N ) using only three colors (call these

colors c 1. c 2 and c 3). In fact. this last statement is true even if the colors of the first and

last nodes, namely 1 and N. are bound a priori to two of the colors c I. c 2 and c 3.

After coloring the nodes in Ro(I.N ). we consider the 0-nested regions consecutively.

Each O-nested region r (u, .w, ) is either a trivia' region which contains only nodes U. and
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w,. or it contains at least two 1-nested regions r(u,.,w,),.. r (u,.w,). where.

u+.l-u , , wjp =w, and p -2. Given that u, and w, are already colored with two different

colors from (c 1. c 2. c 3), then nothing has to be done in the former case. If. however, the

latter case applies, then we consider the set R 1(u, .w1 ) which contains the end nodes u,., and

wij, j =1.....p. of the 1-nested regions between u, and w,. Following an argument similar

to the one used for Ro(1.N ). it may be shown that the nodes in R 1(u, .w, ) may be colored

using only c 1. c 2 and c 3.

After coloring the nodes in R i(u, .w, ). we repeat the above process with the 2-nested

regions contained in each 1-nested region r (u,  9 w, j ). i = I.....p. When the recursive process

terminates, all the nodes in G will be colored. Termination is guaranteed because every

region in G has a finite nesting level. []

Corollary: Each of the levels generated by the node numbering algorithm of Section 2. is

3-colorable. [

3.3. A lower bound on A

In this section. Equation (1) is used to derive F '.3wer bound on A in terms of the total

number of nodes n in the graph GA. First. some terminology is introduced: Let

* =. I ;V i =even and i -u I be the set that contains the even numbered levels, up to

level u. and let , be the total number of nodes in these levels, that is

IIl fenu 1 V4 1. Let Sod:.. = IV, : i =odd and i -<u ) and n,, ,, be defined in a

similar way. Let also a. be the difference In.... -n, ,, . and denote the maximum of

a, foru=1, ,m by cmax.

The lists L' . i =1.....2o" are constructed in the algorithm of Section 2 incrementally by

considering the leve- 1.2. in order. Let L. be the initial part of L' which contains

those nodes that are in levels 1. u ,. and let I' be the number of nodes in L., Clearlv.

1,',, IL I. Finally. let vmax be the maximum number of nodes in a level. and "a, be the

maximum number of nodes in a set of independent nodes in any level. More precisely.

v w- e€ I+I+ II l + ¢ -- t r r P + - I "' + : . . . . ,
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€ .
Vmax = max{ I Vi I •i =1 .m and vax = maxi IVi I =;1....,m andk=.0. k

With this notation, equs (2) may be written in a more general form. More

specifically, for any u.
P

Il -ll v IF (ij (1 -) OR (i.j > o-) (3)

But. l ' = nd, ,. and I.' n ,. This, together with (3) gives

o, II i if ( .a
neved -(0--I) vnax -- l , n d., +(0-l)v x  if i (0. (4.a)

1< 0.
neen. a- (a--I) Vrnx < i n + (a--I) Vnax if i > 0* (4.b)

The above two inequalities. may then be used to compare the number of nodes in two lists

L4 and Ld for i Ia- and j >a0. Namely.

Uill < -oddM +2(0--1)Vmax if i (0 and j>a (5)
01

From (3) and (5). the following bound may be obtained for any i and j.

Il, -- l I< aU + 2( -1)v , x  for i j -<20 (6)
a-

In order to apply (1). we first need to estimate a lower bound on 1,. Noting that

nodd / + n.ee, = n. the total number of nodes in GA . and applying the definition of cmax ,

we may obtain.

n -max n -kmax
* -" / 2 "dnd. . 2

which, together with (4) gives

I n - amax - 2( o -1) v max for i1. .2c" (7)
2a"

Next, we need to estimate an upper bound on the value of 0 which appears in (1). For

this, we consider any two nodes e I and e, from two different lists L' and L . respectively.

such that e and e are neighbors. Being neighbors, the two nodes should either be in the

0

I °@,' , .'..'•.° .. ' ,,a. ',@ . . . . . .€ ., . . . . . , . .. - -. . ' A'. °, -. ' .q, .,
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same level, or be on two consecutive levels. This means that there exists a level u such that

e and e 2 are not in L' and Lj. respectively, but are in L+2 and L J12 . respectively. How-

ever.. L u' +2 may contain at most v .x nodes which are not in L. and the same applies to

Lj+2 and L . Hence. from the definition of we get

.-< l Id - I + V

which from (6) gives

amx + (3o.-2) v (ax

Finally. by substituting (7) and (8) into (1) and noting that 2-<oa<3 and that

vr..2v.u (guaranteed by the algorithm for coloring the levels), we may obtain the fol-

lowing bound for A

n U 3
A 4 (*= + 2v max) (9)2o" -

Experimental results, including those for the test problems of Section 6. show that

v is of the order of vn . Hence. for large values of n. vnmax is much smaller than n.

Moreover, if the number of nodes in the odd and even numbered levels are approximately

equal. then maix is also smaller than n, and (9) may be written in the form

2a 6

where K is a small number.

> d
Fig 5-a mesh resulting in (-5)n

d-I

%
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Although, for the meshes considered in Section 6. areax is much smaller than n. it

seems that. without additional restrictions on the topology of the mesh, the value of omax

may be of the order of n. For example, a mesh of the type shown in Fig. 5 results in
' (max > ( .w-1) n w -0/2 - and d is the maximum number of neighbors

per node (d =9 in the figure). For this type of meshes, the odd/even grouping of the levels

leaves the value of arax without any control. In the next section, we discuss a grouping

approach which overcomes this problem.

,%.

51-.

Si.
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4. A THREE LEVEL GROUPING MECHANISM

The central concept in the algorithm of Section 2 is to group the levels in GA into two

sets of levels, namely S,,.n ,, and Sod,,,. such that the levels in each set are independent. i

In this section, we replace the odd/even grouping of the levels by another grouping which

tries to balance the number of nodes in each group. The flexibility required to maintain this

balance may be provided if three, rather than two, groups are used as explained thereon.

Given the levels V 1.... .V., it is required to distribute these levels into three sets. .,

namely S1,,. S 2, and S 3,,, such that:

1) Any two consecutive levels V, and V,+1 should be in two different sets. This

guarantees that the levels in each set are independent, and

2) For i .j =1.2.3. n, 2z nj,, ,where n,,,, is the total number of nodes in the lev-

els that are contained in S ,,,. More precisely. ni m = V I W I

The sets S,,,. i =1.2.3 may be constructed inductively. More specifically. let S, -1,

i =1.2.3 be the sets that were constructed from the levels V 1. .V,_ 1. and assume,

without loss of generality, that n 1 ,,- 1 < n 2 .,- 1 
%< n 3 . -1. Then. in order to keep the size of

the sets balanced. it is natural to add level V,, to the set that contains the least number of

nodes. In other words:

$1,," $1.-1 U IV.) } S2,. = S 2,,1 and S3.. =S3..-I

Now if the sizes of S, ., i =1.2.3 differ by at most %'mx -" max 11'4 I that is it

n2u-- l.u-I l3.ul .-- lu-i n n ' max

then it mav be shown that after the addition of level u, the sizes of the new sets may not

differ by more than 1 max. that is

n,., -n:, %, Max  i~j=1,2.3 10)

L'nfortunately, if the set S i,,- contains level 1',. then it is not possible to add I to

that set. because of the dependency between \',, and 1',_. In this case, '* may be added to

4

1 ... ,......,-< -.., -.....-..' -.- '.' - -'-',,- .'-.".. ., ,--',..-" "'..': ', "1.'--.'-.',p,'- _N ,-'-'.?,.","-.N .,? ,", '':, V.",
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the next smallest set, namely S 2 ,,- 1 . However, the resulting sets may. then, violate (10).

More specifically. if n 2,- 1 - n 1,-1 = D v max, then it is possible to prove the following,_

least upper bound:

n 2. - n 1, < V max + D < 2 Vrmax

In order to reduce the maximum difference in the sizes of the sets back to v,,'max, let w

be the smallest integer such that one of the following is true

IV.+I + IVu +...+ IVu I > D (Here w is odd)

or

iV.+ 2 1 + IV.+41 + + I V. +1 1 > D (Here w is even)

If w is odd. then add Vu +1,V,,+ 3 , • •, to S ,, and V.+ 2 ,Vu.+4. . +- -1 to S3M, while

if w is even. add Vu +2,Vu+4,. . .,. to S 1 , and V.+I-.V.+3,'"Vu+w, - to S 3 ,. With

this, it is easy to show that at level u +w , the sizes of the sets S, , .. satisfy

njAn,, . - )., V max  i j = 12.3 (1Lla)

and that at any level u +1 between u and u +w the sizes satisfy

In,,+, n.,+11 K, 2v max i.j=1.2.3 (llb)

After restoring the difference in the sizes of the sets to vmx. these sets may be reor-

dered (renamed) such that nL +w, n 2.u +., n 3,u . and the above procedure may be

repeated. More precisely, the algorithm may be described as follows:

/* n,.u and t, will be used to denote the total number of nodes in the levels contained

in S, ,. and T, . respectively */

FOR i =1.2.3 let S, o = the empty set

U = 0"

REPEAT

U =U +1

Sort and rename S,,,-,. i =1.2.3, such that nj 1.,_<(n .. _ 1< n3

IF (V - 1 1 S,._,1 ) THEN

71

.r.'e
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ELSE I

IleLet D = n 2.._- - nx r

Let w =0, c =1 and T, T - the empty set,

WHILE(to -<D andu+w 4<m)DO

{w =w +1

c - 1-C /* switch between T o and T, */

TC =TC U IV~.1i O ... vU{Vl

Su w= S.-1U I.

u =u +w )

UNTIL u ?- m (the number of levels)

The performance of the algorithm is established in by the following proposition which

may be proved from (10) and (1)"

Proposition: At any specific stage u of the above algorithm, the number of nodes in the sets

S *,, i =1.2.3. may differ by at most 2 v max. where Vmax is the size of the largest level.

Given that the levels may be partitioned into three sets of independent levels, and that

each level may be partitioned into 0 sets (0-4,3) of independent nodes, then. it is possible to

modify the algorithm of Section 2 such that 3o- lists of independent nodes, rather than 2(7

lists, are constructed in step 4. The advantage gained from increasing the number of lists is

the one of having lists of approximately equal sizes. More precisely. following the same

reasoning as in Section 3. it is possible to show that. n, ; (n - 4 v. max)/3 and that

I,, > (n - 4vmax - 3(-1)VO ax )/3o-. This leads to the following bound on A

A > -1 3.17 Vmax (12)
3a"

which is better than (9) if cmax > 2n /9(7 + 2.12vmax.

'V• " " -u "* " . [ "W " W 1 " -.-- " -"a ". "I " '. % ' N -' '. . " -. *' ' • " " • 6 d -
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5. ENHANCEMENT OF PERFORMANCE USING BACKTRACKING

Both bounds (9) and (12) depend on the number of colors, o" which are needed to

color the nodes of the levels in GA. Specifically. larger values of a are obtained for smaller

values of cr. Although. it was proved that c" < 3. experimental results showed that very

frequently. two colors are enough for the partition of each level, and that in only few

instances, the third color is needed. The need for the third color results whenever a level

contains three nodes that are mutual neighbors (see Fig 6(a)). Such nodes clearly form a

cycle within the level.

V. -. V -V

S"i

(a) before backtracking (b) after backtracking

Fig 6 - Example of the one-level look-back scheme

By a slight modification in the level structure of GA. it is sometimes possible to elim-

inate the need for a third color. More specifically, assume that V 1. . -1 are 2-colorable

and that three nodes e l.e 2 and e 3 form a cycle in level V,,. If one of these nodes, for exam-

ple e 1 . has only one neighbor in the previous level V,,_-1. then the cycle involving the three

nodes may be broken by moving e I from level V, to level V,_-1 (see Fig 6(b)). The new

level V.- 1 = V,. 1 U le1 ) is 2-colorable because V,,_-1 is 2-colorable and eI is connected to

only one node in V,,-,. The following levels, namely V',.. w >. may then be constructed

from V',, in the usual way.

The new level V',, contains, in addition to all the nodes in V - le1). the neighboring

nodes of e which are not in V,_ or V,. Hence. it is possible for " to contain a cycle.

% % %



- 23 -

and thus be 3-colorable. If this is the case. then the above backtracking scheme may be

repeated. Note that repeated backtracking may not leqd to oscillation because in each

instance of backtracking a new node is added to level u-1. This may continue until, either

level u is 2-colorable or until a cycle is encountered for which backtracking is not possible.

In other words, it is possible to construct a level structure in which each level is 2-colorable

provided that, whenever a cycle is encountered in some level, one of the nodes forming the

cycle is connected to only one node in the previous level.

The above one level look-back strategy may be extented to a two levels look-back

scheme. More specifically, assume that three nodes e,. i =1.2.3. form a cycle at level V,.

and that each node e1 . is connected to at least two nodes in V,._.-, say e A., k ?, 2 (see Fig

7(a)). In this situation, the one level look-back fails. However. if one of the nodes e,.A. is

connected to only one node in level V.-2. then we may add this node to V,,-2 and form the

new levels V'.. w >u-2. (see Fig 7(b)).

(a) before backtracking (b) after backtracking

Fig 7 - Example of the two-level look-back scheme

The two level look-back scheme should be applied very cautiously because it may lead

to execution time which is exponential in the number of nodes. More precisely, assume

that, in order to render V, 2-colorable, a backtrack to level u -2 is needed. Level u -1

may. then. become 3-colorable. and backtrack to level u -3 may be needed. This procedure

may roll back all the way to level 1. In order to guard against this, some limit, bmax, may

i
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be put on the number of levels allowed to be crossed backward. For example, bmax = 2

would mean that, if as a result of backtracking from level u . level u -1 becomes 3-

colorable and backtracking to level u -3- is needed, then the backtracking process is stopped,

and the 3-color partitioning of level u -1 is accepted.

,°.

.'
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6. EXPERIMENTAL RESULTS

A program which implements the basic numbering algorithm described in Section 2

was written in Fortran. The program incorporates the backtracking schemes of Section 5.

and an input variable "BACK" allows for the choice among 0. 1 or 2 level look-back back-

tracking. Another variable. "Bmax". limits the number of levels that may be rolled back in

the case BACK=2. In our experiments. Bmax was fixed at the value 3. A stack oriented

approach is used to implement the algorithm of Section 3.2 for coloring the nodes in a par-

ticular level.

The implementation of the numbering algorithm is general and may be applied to any

type of meshes. However. the backtracking facility (BACK > 0) may only be used for tri-

angular meshes. Here we note that, for non-triangular meshes, more than three colors may

be needed to color the nodes in each particular level.

In the algorithm of Section 2, 2o- lists of nodes are formed, where

a = maxis,, :1 <u <m ); c' of these lists were formed using the odd numbered levels, and

the other a, using the even numbered levels. In implementing the algorithm, a decision was

made to distinguish between or.... = maxis. ; u =even I and (rod = max{sL, u =odd 1.

With this. 0 v, + 0odd lists of nodes may be formed. Clearly, if 0-Ow = (7odd +0,,, . then.

o <2 o0. Although the theoretical bound (9) depends on the largest of ',od and a0en - it

was found that the value of A may increase, slightly, due to this optimization.

The results of running the algorithm on three test problems generated from the irreg-

ular triangular meshes are reported in Tables 1.2 and 3. The test problems are generated

from the three meshes M 1, M2 and M3 shown in Fig 8. M 1. which is extracted from

[231. contains 145 nodes while M 2 and M 3. which are extracted from [91. contain 249 and

449 nodes, respectively. For each mesh, a number of initial levels were tried. An initial

level may contain only one node (such a level is denoted by the letter N in Fig 8). or it

may contain a number of nodes (such a level is depicted by a dotted bold line in Fig h and

denoted by the letter E).

N N
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N3

N2NI

(a) The mesh M I

N,

£E2

N N 2

(b) The mesh M 2

E 4

E3

N 

(c) The mesh M 3

Fig 8 - Examples of irregular meshes
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In order to evaluate the effectiveness of the backtracking scheme. each problem was

tested with BACK set to 0. 1 and 2. respectively. For each run, the total number of lists.

o'tor - O'.*e +'odd. as well as the resulting A are reported in the tables. Note that blank

entries are used to indicate irrelevant runs. More specifically, if ,o' = 4 for some value of

BACK, then larger values of BACK may not improve A.

BACK = 0 BACK = iInitial

Level cr, o A ot, A
N 1  4 33 -

N 2  4 33 -

N 3  4 32
El 4 31
E2 4 33 -

E 3  4 30 - -
£4 5 20 4 31

Table 1 - The results for the mesh M 1 (n =145).

Initial BACK = 0 BACK = 1 BACK = 2

Level .O'o A 'r, A "o A

N 1  6 31 5 37 5 33
N 2  6 26 5 32 4 51
N 3  6 32 5 33 4 51
N 4  6 34 5 32 4 52
N s  6 33 5 35 4 50
El 6 32 5 35 4 51

E2 6 26 4 47 - -
E3 6 31 4 54 - -
E4 6 32 5 34 4 53E 5  6 29 5 33 4 52

Table 2 - The results for the mesh M 2 (n =249).

The first observation to be made about the results concerns the frequency of success of

the backtracking scheme. Among the 26 runs reported. the scheme failed to obtain 2-

colorable levels only twice. Namely with M 2 starting at N and with M 3 starting at E 4.

Also. for a specific problem, larger values of A are obtained for smaller values of 0 -,, .

irrespective of the initial level. For example. for M 3. A lies in the range [50.63] if 7%, =6,

and in the range [81.99] if o',,, =4. This indicates that the algorithm is not \,er\" sensitive to

the initial level as long as backtracking is used to minimize cr,,,,
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BACK =0 BACK =1 BACK =2 ".Initial,.,

Level rto A ot A o1 A
N 1  6 61 6 54 4 96
N 2  6 63 6 57 4 99
N 3  6 59 6 53 4 94
N 4  6 52 6 50 4 90
N 5  6 56 6 56 4 81
El 6 50 6 58 4 93
E2 6 60 6 52 4 91,
£3 6 56 6 53 4 81-
E4 6 57 6 52 5 58.

Table 3 - The results for the mesh M 3 (n =449).

An interesting phenomena may be observed in Table 3. More specifically, given the I.

symmetry of M 3. runs with starting levels EI and E2 would be expected to yield the same

results. So are runs starting from E3 and E4. and runs starting from N 1 and N 2 . This is

not the case. however, because some initial numbering has to be used to input the mesh into

the program. and even though the mesh is symmetric, the initial numbering may not

guarantee that the nodes in symmetric triangles are handled in the same relative order. The

relative order of nodes is particularly important when backtracking is used because. if more

than one node may be used to break a cycle in a level, then the first one encountered is used.

The results also show some expected anomalies. More specifically, a A obtained with

BACK-k may be worse than the one obtained with BACK=k -1. For example. M 3 starting

from N, produced A = 61 and 54 for BACK = 0 and 1. respectively. This happens because

backtracking tends to produce larger levels, thus increasing ' max- Hence, if the backtrack-

ing procedure fails to reduce o',,, then. by (9). larger vmax leads to smaller A.

Although finding the best A. namely A.., is an NP-hard problem. it is easy to see that

for any triangular mesh with n nodes. A P *-. In other words. the best A for M 1. M 2
3

and M3 may not exceed 48, 83 and 147, respectively. Clearly. our algorithm produces

A > 0.5Ao1, in linear time.

%. .. %. %- .'-"
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7. CONCLUDING REMARKS

The Multicolor algorithm given in Section 2 is a general numbering algorithm which

may be applied to any graph corresponding to an irregular mesh. However, the zero stretch

resulting from the algorithm is inversely proportional to the number of colors o' needed to

color each level in the graph. For 3-node triangular meshes, it is proved that o (< 3. and by

applying the same technique used in Section 3. it is possible to pro\.e that, for 4-node rec-

tangular mesh( (K, 4. Similar tight upper bounds on oT do not seem easy to establish if

the nodes are not confined to the corner of the elements and if the number of nodes in each

element is not fixed. These types of meshes arise if high order elements are used or if some

adaptive mesh refinement techniques are applied [22). Further research is required to deal

with such meshes.

It has been reported [8. 15, 17] that. for linear systems resulting from regular grids.

the convergence rate of the PCCG method deteriorates when the zero stretch is increased by

renumbering the nodes of the grids (the renumbering also increases the bandwidth). In

fact, the results in [15] suggest that the convergence rate is inversely proportional to the

zero stretch and/or the bandwidth of the matrix. This effect also exists, in a milder form.

in systems resulting from pierced rectangular grids [15]. which are slightly irregular grids.

If future experiments show that the same effect persists for irregular grids, then it will be

interesting to study possible modifications to the multicolor algorithm that will maintain a

given zero stretch (specified by the architecture of a supercomputer. for example) while

minimizing the bandwidth.

'W1

-,

% %d," s N %.ssE'V* %, %W" %* -A*% " *d - *% .5
S.U 61- A- q5



",

- 30 -

References

1. L. Adams and J. Ortega. "A Multi-color SOR Method for Parallel Computation." Proc.

of the 1982 Int. Conf. on Parallel Processing. pp. 53-56.

2. G. Chartrand and F. Harary. "Planar Permutation Graphs.- Annals of the Institute of

H. Poincare, Sect B, vol. 3. pp. 433-438, 1967.

3. G. Chartrand. D. Geller. and S. Hedetriemi, "Graphs with Forbidden Subgraphs," J. o./

Comb. Th., Ser B. vol. 10. no. 1. pp. 12-41. 1971.

4. E. Cuthill and J. McKee, "'Reducing the Bandwidth of Sparse Symmetric Matrices."

Proc. ACM National Conference, vol. 24, pp. 157-172. 1969.

5. M. Garey. R. Graham, D. Johnson. and D. Knuth. "Complexity Results for Bandwidth

Minimization." Siam J. on Applied Mathematics, vol. 34, no. 3, pp. 477-495. 1978.

6. N. Gibbs. "A Comparison of Several Bandwidth and Profile Reduction Algorithms."

ACM Trans. on Mathematical Software. vol. 2. pp. 322-330, 1976.

7. L. Hageman and D. Young, Applied Iterative Methods, Academic Press. New York.

(1981).

8. D. Kincaid. T. Oppe. and D. Young, "Vector Computations for Sparse Linear Svs-

tems." Tech. Report CNA-189. Center for Numerical Analysis. The University of

Texas at Austin, 1984.

9. K. Law and J. Fenves. "A Node-Addition Model for Symbolic Factorization." ACM

Trans. on Mathematical Software. vol. 12. no. 1. pp. 37-50. 19W,.

10. J. Leung. 0. Vornberger. and J. Witthoff, "On some \'ariants of the Bandw.idth

Minimization Problem." SIAM J. on Computing. vol. 13. no. 3. pp. 650-667. 19S4.

11. T. Manteuffel. "An Incomplete Factorization techniqu- for Positive Definit L.inear Sys-

tems." Mathematics of Computation, vol. 34. no. 150, pp. 473-497. 19o.

12. L. Marro. "A Linear Time Implemetation of Profile Reduction -lgorithms for Sparse

Matrices," SlAM J. on Scientific and Statistical Computing. ol. 7. no 4. rr 1212-

%.



-31-

1231. 1986.

13. J. Meijerink and H. van der Vorst. "'An Iterative Solution Method for Linear Systems

of Which the Coefficient Matrix is a Symmetric M-Matrix." Mathematics of Computa-

tion. vol. 31. no. 137, pp. 148-162. 1977.

14. R. Melhem. "'Determination of Stripe Structures for Finite Element Matrices." SIAM

J. on Numerical Analy'sis. 1987. To appear

15. R. Melhem. "Toward Efficient Implementations of Preconditioned Conjugate Gradient

Methods on Vector Supercomputers." Int. J. of Supercomputer Applications. vol. 1. no.

1. pp. 70-98, 1987.

16. C. Papadimitriou. "The NP-completeness of the Bandwidth Minimization Problem."

Computing, vol. 16. pp. 263-270, 1976.

17. E. Poole and J. Ortega. "Multicolor ICCG Methods for Vector Computers." Applied

Math. Report RM-86-06. University of Virginia. 1986

18. R. Rosen. "Matrix Bandwidth Minimization." Proc ACM National Conference. vol.

23. pp. 585-595. 1968.

19. Y. Saad and M. Schultz. "Parallel Implementations of Preconditioned Conjugate Gra-

dient Methods," Tech. Report YALEU/DCS/RR425.. Dept. of Computer Science. Yale

University. Oct. 1985.

20. D.T. Tang. "A Class of Planar Graphs Containing Hamilton Circuits." IBM Res. Note

1965. NC 503

21. 1. Turner. "On the Probable Performance of Heuristics for Bandv, idth Minimization."

SIAM J on Comput.. vol. 15, no. 2. pp. 561-580. 1986.

22. P. Zave and W. Rheinboldt. "Design of an Adaptive, Parallel Finite Element System."

ACM Trans on AlathematicalSoltware, vol. 5. no. 1. pp. 1-17. 1979

23. 0. Zienkiewicz. The; Iinite L'lement Method. third edition. McGra\ Hill. 1979.

zI- - J'~"*' ".''

-,.-.:.,,.,,.-.,,.-,.-..:, .-.....- .,



~~WWWW1IW WUWUWW UWWMW &TW U~W~ VW'J V~ ~- I.W ~Z ~ M ~ I(U ~ V N ~ 'V I'WWTWwIr~M N~N~ V~V N ~ N - -- -

y4cp

I
a

N

.1
p

~a.

N.

1*

S.

S.

'p

'pS
'p
'is

a, 'p
a, p

5,

IC g~.'p

'p

*. "p

____________________________________________ S
U *~~*b ~ ~

~ P ~ a


